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Computer simulation study of a simple cubatic mesogenic lattice model
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Over the last 15 years, the possible existence of a cubatic mesophase, possessing cubic orientational order
(i.e., along three mutually orthogonal axes) but no translational one, has been addressed theoretically, and
predicted in some cases, where the investigated interaction models involved hard-core repulsion only; on the
other hand, no experimental realizations of such a phase are known at the time being. The present paper
addresses a very simple cubatic mesogenic lattice model, involving continuous interactions; we consider
particles possessing O, symmetry, whose centers of mass are associated with a three-dimensional simple-cubic
lattice; the pair potential is taken to be isotropic in orientation space, and restricted to nearest neighboring sites;
let the two orthonormal triads {u;, j=1,2,3} and {v;, k=1,2,3} define orientations of a pair of interacting
particles, and let f;=v;-u,. The interaction model studied here is defined by the simplest nontrivial (quartic)
polynomial in the scalar products fj, consistent with the assumed symmetry and favoring orientational order;
it is, so to speak, the cubatic counterpart of the Lebwohl-Lasher model for uniaxial nematics. The model was
investigated by mean field theory and Monte Carlo simulation, and found to produce a low-temperature
cubatically ordered phase, undergoing a first order transition to the isotropic phase at higher temperature; the

mean field treatment yielded results in reasonable qualitative agreement with simulation.
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INTRODUCTION AND POTENTIAL MODELS

Over the last three decades, theoretical studies of various
simple mesogenic models have predicted a rather rich and
intriguing phase behavior, whose experimental realization
has often proven to be a rather challenging task of its own.
For example, the possible existence of biaxial nematic
phases was predicted by various theoretical treatments since
1970 [1], and is still currently investigated. On the experi-
mental side, stable biaxial phases have been observed in lyo-
tropic systems as early as 1980 [2]; since 1986 there have
been various claims and counterclaims of synthesizing and
unambiguosly characterizing a thermotropic biaxial nematic
and better experimental evidence seems to have been pro-
duced over the last two years; a more detailed discussion and
a more extensive bibliography can be found in Ref. [3].

As another example, over the last 15 years, the possible
existence of a cubatic mesophase, possessing cubic orienta-
tional order (i.e., along three mutually orthogonal axes) but
no translational one, has been investigated theoretically, and
explicitly predicted in some cases [4-9]): cut hard spheres
were studied in Refs. [4,5]; the possible existence of cubatic
order for hard cylinders was investigated in Ref. [6], but no
evidence of it was found in this case; Onsager crosses were
studied in Ref. [7]; arrays of hard spheres with tetragonal or
cubic symmetry have been studied in Refs. [8,9]. The named
investigations have been carried out on hard-core models,
both by simulation and by approximate analytical theories; in
some cases the consituent particles were uniaxial (i.e., D.y,
symmetric) [4—6], and in other cases they possessed tetrag-
onal or cubic symmetry [7-9]. As hinted above, no experi-
mental realizations of a cubatic phase are known at the time
being.
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On the other hand, over the decades, mesophases possess-
ing no positional order, such as the nematic one, have often
and quite fruitfully been studied by means of lattice models
involving continuous interaction potentials [10], starting with
the Lebwohl-Lasher (LL) model and its seminal simulation
papers in the early 1970s [11,12]; this approach also yields a
convenient contact with molecular field (MF) treatments of
the Maier-Saupe (MS) type [13-15].

Here we investigate a very simple lattice model capable
of producing cubatic order: we are considering classical,
identical particles, possessing O, symmetry, whose centers
of mass are associated with a three-dimensional (simple-
cubic) lattice 73; let x u€ 73 denote the coordinate vectors of
their centers of mass; the interaction potential is taken to be
isotropic in orientation space, and restricted to nearest neigh-
bors, involving particles or sites labeled by w and v, respec-
tively. The orientation of each particle can be specified via an
orthonormal triplet of three-component vectors (e.g., eigen-
vectors of its inertia tensor), say {WM-, j=1,2,3}; in turn
these are controlled by an ordered triplet of Euler angles
Q,={¢,.0,.¥,}: particle orientations are defined with re-
spect to a common, but otherwise arbitrary, Cartesian frame
(which can, but need not, be identified with the lattice
frame). It also proves convenient to use a simpler notation
for the unit vectors defining orientations of two interacting
molecules [16], i.e., u y for W s and v, for w,, respectively,
here, for each j, u; and v; have the same functional depen-
dences on ), and (},, respectively (pairs of corresponding

unit vectors in the two interacting molecules); let Q:QW

={¢, 0, Y} denote the set of Euler angles defining the rotation
transforming w; into v;; Euler angles will be defined here
according to the convention used by Brink and Satchler
[17-19]; let us finally define

fie=(vj-uy). (1)

An interaction potential consistent with the assumed symme-
try can be written
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FIG. 1. (Color online) Contour plot for the function H(7/2) [see
Egq. (7)]; the contour-to-contour separation is 0.05€; thin (red) lines
correspond to negative values, thicker (green) lines are associated
with positive values, and the thickest (blue) one defines the zero-
energy contour. The plot was produced by means of Maple.

3 3

V=W,,=> D EFf, (2)

j=1 k=1

here E(---) denotes an even function of its argument; E is
also assumed to be analytical, so that Eq. (2) can be ex-
panded as a convergent series of the form

303
V=a,+ E 6121(2 2 (fjk)21>

=2 j=1 k=1

303
=by+ >, bZI(E > Pzz(fjk)), (3)

=2 j=1 k=1

where P,,(--*) denotes Legendre polynomials of even order,

and the missing second-order terms are just constants, i.e.,
3

3.3 3
E Esz'k=3a 2 2P2(fjk)=0‘ (4)

j=1 k=1 j=1 k=1

The simplest interaction model expected to produce cubatic
order is obtained by setting a, or b, to negative quantities,
and all other higher-order coefficients to zero; in other words
] 3 4 33
‘I’=—g€<52 2 (f;k)_9> =—Z€E 2P4(fjk)
j=1 k=1 Jj=1 k=1

=—€G4(Q), (5)

where € denotes a positive quantity, setting energy and tem-
perature scales (i.e., Tk=kBT/ €); here numerical factors have
been adjusted by setting the isotropic average of the pair
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FIG. 2. MF predictions and simulation results for the potential
energy; the continuous line corresponds to MF predictions, discrete
symbols have been used for simulation results, obtained with dif-
ferent sample sizes, and have the following meanings: circles, ¢
=10; squares, ¢=20; triangles, ¢=30; unless otherwise stated or
shown, here and in the following figures, the associated statistical
errors fall within symbol sizes.

potential to zero (i.e., by=0), and its minimum value to —e.
The explicit expression of G,({)) reads

G4(Q) = S{7A8 Q) + V35[ AL ,(Q) + A ()] +5A% (D)}
= 2z (140 cos(20)[ 1 + cos(4P)cos(4)]
+5 cos(46)[49 + cos(4 P)cos(41)]
+7{9 + 25 cos(4 g)cos(4 ) + 40[cos(4 P)
+ cos(44)](sin 6)*} — 40[7 cos(6)
+ cos(36)Jsin(4 P)sin(44)). (6)

The functions Af,,q appearing in Eq. (6) are symmetry-

adapted combinations of Wigner D functions, as discussed in
Refs. [7,20,21].

G4(ﬁ) is a function of three independent variables, and in
practice its visualization requires using projections (i.e., con-
straining one of the three independent variables); for ex-
ample, let a denote a fixed angle, and let

H(CY)=—€G4($,5= CYJZ); (7)

contour plots for H(7r/2) are shown in Fig. 1.

MEAN FIELD AND SIMULATION ASPECTS

After applying a MF procedure [15], the resulting expres-
sion for the free energy has the form
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FIG. 3. MF predictions and simulation results for the configu-
rational heat capacity; same meaning of symbols as in Fig. 2; here
the associated statistical errors, not shown, range between 1% and
5%.

Avp=ps;-T I[E/87)], E= f exp(BW)dw,
Eul
(8)

W=2ps,G4(w), B=1T, )

where [, denotes integration over Euler angles, i.e., for any
integrable function F(w)

2 T 21
f Flw)dw= f d¢o f sin 6d 6 f Flw)di; (10)
Eul 0 0 0

here 2p=6 denotes the lattice coordination number, and s, is
the variational parameter (i.e., the order parameter). More-
over
dA, -
—M=2p)r r=s5,-(UE)| Gulwexp(fW)do.
954 Eul

(11)

and the consistency equation is 7=0.

The free energy was minimized numerically for each tem-
perature over a fine grid, by means of numerical routines
using both the function [Eq. (8)] and its derivative [Eq. (11)];
the obtained variational parameters were used to calculate
the potential energy per particle U;,[F

Upp= =15 =~ ps?, (12)

where the consistency equation has been allowed for on the
. . . . *

right-hand expression; the configurational specific heat Cy
was then calculated from Uy, by numerical differentiation;
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FIG. 4. MF predictions and simulation results for the order pa-
rameters s,, obtained with different sample sizes; same meaning of
symbols as in Fig. 2.

here and in the following formulas, asterisks mean scaling by
€ for energy quantities, and scaling by kp for the specific
heat. We found a low-temperature ordered phase and a first-
order transition to the disordered one, taking place at the
temperature @y;z=0.7878.

Simulations were carried out on a periodically repeated
cubic sample, consisting of V:q3 particles, ¢=10,20,30;
calculations were run in cascade, in order of increasing tem-
perature, and starting from a perfectly ordered configuration
at the lowest investigated temperature; each cycle (or sweep)
consisted of 2V MC steps, including a sublattice sweep [22];
the finest temperature step used was AT =0.0005, in the
transition region.

Notice that we shall find here a pronounced first-order
transition, and that simulations carried out in order of de-
creasing temperature and started from the disordered high-
temperature régime may show hysteresis.

Different random-number generators were used, as dis-
cussed in Ref. [22]. Equilibration runs took between 25 000
and 100000 cycles, and production runs took between
200 000 and 800 000; macrostep averages for evaluating sta-
tistical errors were taken over 1000 cycles. Calculated ther-
modynamic quantities include mean potential energy per site
U" and configurational specific heat per particle C".

As for the the frame-independent (rotationally invariant)
order parameter, let

3

M= \/(i)i s (i » P4<wk,,--w,i,k>): (13)

A=l v=1 \ j=1 k=1

then the simulation estimate for the order parameter is
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FIG. 5. Simulation results for the order parameter susceptibility
X4, obtained with different sample sizes: same meaning of symbols
as in Fig. 2.

1
and its associated susceptibility reads
1
Xa =, BUM) = (M)?). (15)

As for computational aspects of Eq. (13), let us remark that,
by the addition theorem for spherical harmonics [17-19], the
double sums appearing in it can be constructed via single
sums [7], i.e., as linear combinations of the squares of the
simpler quantities

4

77j,m = E Im[C4,m(WMJ)];

=1
(16)

here m=0,1,2,3,4,Cy,,(: --) are modified spherical harmon-
ics, and Re and Im denote real and imaginary parts, respec-
tively; in turn, each spherical harmonics is a suitable poly-
nomial constructed in terms of Cartesian components of the
corresponding unit vector (see, e.g., Ref. [23]); notice also
that in this case all second-rank order parameters are zero by
symmetry [15].

One can also evaluate the so-called short-range order pa-
rameter [24,25]

Vv
gj,m = E Re[C4,m(WM,j)]9
=1

3 3
> D Py (17)

4
Oy= -
21\ 5 o

measuring correlations between pairs molecules associated
with nearest-neighboring sites; in the present case, the func-
tional form of the interaction potential entails that the poten-
tial energy is proportional to o, i.e., U =—poy.
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FIG. 6. Simulation results for the correlation excess r, [see Eq.
(18)], obtained with different sample sizes: same meaning of sym-
bols as in Fig. 2.

Long- and short-range orientational order can be com-
pared via the correlation excess

r4=0'4—sZ. (18)

RESULTS AND COMPARISONS

MF predictions and MC results for a few observables are
plotted and compared in Figs. 2—6.

Simulation results for the potential energy (Fig. 2) are
independent of sample size for 7<0.68 and then 7=0.72,
and show a pronounced sample-size dependence in between;
actually, already for ¢=20, Figure 2 exhibts a pronounced
jump taking place over a temperature range of 0.0005.

Figure 4 shows a similar pattern as for the jump of s,
taking place at the same temperature as for U'; on the other
hand, in the low-temperature regime, sample-size effects ap-
pear to saturate for ¢=20, and the high-temperature region
exhibits a pronounced decrease of s, with increasing sample
size.

Both configurational specific heat (Fig. 3) and susceptibil-
ity (Fig. 5) peak around the same temperature, corresponding
to the named jumps; they show a recognizable sample-size
dependence over the same temperature range 0.68<T"

TABLE 1. Transitional properties for the investigated model;
MC results are based on the largest investigated sample size g
=30.

Method 0 AU* S4
MF 0.7878 0.8181 0.5222
MC 0.692+0.001 0.28+0.04 0.38+£0.02
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FIG. 7. Partial configuration obtained by simulation at T
=0.675, and from a sample with ¢=20; see also the text.

=0.72, and are again largely unaffected by sample sizes out-
side it.

Simulation results for the correlation excess are plotted in
Fig. 6, where the transition is signaled by both a peak and a
recognizable jump; in the disordered region, sample-size ef-
fects appear to saturate for g=20.

Thus we propose a first-order transition, and the value

Ope=0.692+0.001, for the transition temperature; here the
error bar is conservatively taken to be twice the temperature
step used in the transition region. Upon analyzing the simu-
lation results for the largest sample as discussed in Refs.
[26,27], we obtained the estimates for transitional properties
collected in Table I; actually, the same analysis was also
applied to simulation results obtained for g=20, and yielded
consistent results. Table I shows a fair qualitative agreement
between MF and MC; of course, in quantitative terms MF
overestimates the transition temperature, and, even worse, its
first-order character, as well known for LL; let us mention,
for comparison, that the ratio @yc/Oyp is =0.878, and that
the corresponding value for LL is =0.856 [10].

Partial snapshots of configurations extracted from a
sample defined by ¢=20 and obtained at temperatures below
and above the transition (7°=0.675 and 7"=0.7) are shown
in Figs. 7 and 8, respectively. More precisely, in order to
maintain readability, we decided to show only a horizontal
section of the sample, i.e., the square layer consisting of (¢?)
particles whose centers of mass had the same value for the
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FIG. 8. Partial configuration obtained by simulation at T*
=0.700, and from a sample with ¢g=20.

vertical z coordinate; the arbitrarily chosen value was q/2.
To summarize, we have defined a very simple cubatic me-
sogenic lattice model (so to speak, the cubatic counterpart of
LL), involving continuous interactions, and investigated it by
MF and MC; both approaches show a first-order transition,

and MF produces a reasonable qualitative agreement with
MC.
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