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Over the last 15 years, the possible existence of a cubatic mesophase, possessing cubic orientational order
�i.e., along three mutually orthogonal axes� but no translational one, has been addressed theoretically, and
predicted in some cases, where the investigated interaction models involved hard-core repulsion only; on the
other hand, no experimental realizations of such a phase are known at the time being. The present paper
addresses a very simple cubatic mesogenic lattice model, involving continuous interactions; we consider
particles possessing Oh symmetry, whose centers of mass are associated with a three-dimensional simple-cubic
lattice; the pair potential is taken to be isotropic in orientation space, and restricted to nearest neighboring sites;
let the two orthonormal triads �u j, j=1,2 ,3� and �vk, k=1,2 ,3� define orientations of a pair of interacting
particles, and let f jk=v j ·uk. The interaction model studied here is defined by the simplest nontrivial �quartic�
polynomial in the scalar products f jk, consistent with the assumed symmetry and favoring orientational order;
it is, so to speak, the cubatic counterpart of the Lebwohl-Lasher model for uniaxial nematics. The model was
investigated by mean field theory and Monte Carlo simulation, and found to produce a low-temperature
cubatically ordered phase, undergoing a first order transition to the isotropic phase at higher temperature; the
mean field treatment yielded results in reasonable qualitative agreement with simulation.
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INTRODUCTION AND POTENTIAL MODELS

Over the last three decades, theoretical studies of various
simple mesogenic models have predicted a rather rich and
intriguing phase behavior, whose experimental realization
has often proven to be a rather challenging task of its own.
For example, the possible existence of biaxial nematic
phases was predicted by various theoretical treatments since
1970 �1�, and is still currently investigated. On the experi-
mental side, stable biaxial phases have been observed in lyo-
tropic systems as early as 1980 �2�; since 1986 there have
been various claims and counterclaims of synthesizing and
unambiguosly characterizing a thermotropic biaxial nematic
and better experimental evidence seems to have been pro-
duced over the last two years; a more detailed discussion and
a more extensive bibliography can be found in Ref. �3�.

As another example, over the last 15 years, the possible
existence of a cubatic mesophase, possessing cubic orienta-
tional order �i.e., along three mutually orthogonal axes� but
no translational one, has been investigated theoretically, and
explicitly predicted in some cases �4–9��: cut hard spheres
were studied in Refs. �4,5�; the possible existence of cubatic
order for hard cylinders was investigated in Ref. �6�, but no
evidence of it was found in this case; Onsager crosses were
studied in Ref. �7�; arrays of hard spheres with tetragonal or
cubic symmetry have been studied in Refs. �8,9�. The named
investigations have been carried out on hard-core models,
both by simulation and by approximate analytical theories; in
some cases the consituent particles were uniaxial �i.e., D�h
symmetric� �4–6�, and in other cases they possessed tetrag-
onal or cubic symmetry �7–9�. As hinted above, no experi-
mental realizations of a cubatic phase are known at the time
being.

On the other hand, over the decades, mesophases possess-
ing no positional order, such as the nematic one, have often
and quite fruitfully been studied by means of lattice models
involving continuous interaction potentials �10�, starting with
the Lebwohl-Lasher �LL� model and its seminal simulation
papers in the early 1970s �11,12�; this approach also yields a
convenient contact with molecular field �MF� treatments of
the Maier-Saupe �MS� type �13–15�.

Here we investigate a very simple lattice model capable
of producing cubatic order: we are considering classical,
identical particles, possessing Oh symmetry, whose centers
of mass are associated with a three-dimensional �simple-
cubic� lattice Z3; let x��Z3 denote the coordinate vectors of
their centers of mass; the interaction potential is taken to be
isotropic in orientation space, and restricted to nearest neigh-
bors, involving particles or sites labeled by � and �, respec-
tively. The orientation of each particle can be specified via an
orthonormal triplet of three-component vectors �e.g., eigen-
vectors of its inertia tensor�, say �w�,j, j=1,2 ,3�; in turn
these are controlled by an ordered triplet of Euler angles
��= ��� ,�� ,���; particle orientations are defined with re-
spect to a common, but otherwise arbitrary, Cartesian frame
�which can, but need not, be identified with the lattice
frame�. It also proves convenient to use a simpler notation
for the unit vectors defining orientations of two interacting
molecules �16�, i.e., u j for w�,j, and vk for w�,k, respectively,
here, for each j, u j and v j have the same functional depen-
dences on �� and ��, respectively �pairs of corresponding
unit vectors in the two interacting molecules�; let �̃=���

= ��̃ , �̃ , �̃� denote the set of Euler angles defining the rotation
transforming u j into v j; Euler angles will be defined here
according to the convention used by Brink and Satchler
�17–19�; let us finally define

f jk = �v j · uk� . �1�

An interaction potential consistent with the assumed symme-
try can be written*Electronic address: silvano.romano@pv.infn.it
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here E�¯� denotes an even function of its argument; E is
also assumed to be analytical, so that Eq. �2� can be ex-
panded as a convergent series of the form
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where P2l�¯� denotes Legendre polynomials of even order,
and the missing second-order terms are just constants, i.e.,
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The simplest interaction model expected to produce cubatic
order is obtained by setting a4 or b4 to negative quantities,
and all other higher-order coefficients to zero; in other words
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where � denotes a positive quantity, setting energy and tem-
perature scales �i.e., T*=kBT /��; here numerical factors have
been adjusted by setting the isotropic average of the pair

potential to zero �i.e., b0=0�, and its minimum value to −�.

The explicit expression of G4��̃� reads

G4��̃� = 1
12�7�0,0

4 ��̃� + 
35��0,4
4 ��̃� + �4,0

4 ��̃�� + 5�4,4
4 ��̃��

= 1
768„140 cos�2�̃��1 + cos�4�̃�cos�4�̃��

+ 5 cos�4�̃��49 + cos�4�̃�cos�4�̃��

+ 7�9 + 25 cos�4�̃�cos�4�̃� + 40�cos�4�̃�

+ cos�4�̃���sin �̃�4� − 40�7 cos��̃�

+ cos�3�̃��sin�4�̃�sin�4�̃�… . �6�

The functions �p,q
4 appearing in Eq. �6� are symmetry-

adapted combinations of Wigner D functions, as discussed in
Refs. �7,20,21�.

G4��̃� is a function of three independent variables, and in
practice its visualization requires using projections �i.e., con-
straining one of the three independent variables�; for ex-
ample, let  denote a fixed angle, and let

H�� = − �G4��̃, �̃ = ,�̃�; �7�

contour plots for H�� /2� are shown in Fig. 1.

MEAN FIELD AND SIMULATION ASPECTS

After applying a MF procedure �15�, the resulting expres-
sion for the free energy has the form

FIG. 1. �Color online� Contour plot for the function H�� /2� �see
Eq. �7��; the contour-to-contour separation is 0.05�; thin �red� lines
correspond to negative values, thicker �green� lines are associated
with positive values, and the thickest �blue� one defines the zero-
energy contour. The plot was produced by means of Maple.

FIG. 2. MF predictions and simulation results for the potential
energy; the continuous line corresponds to MF predictions, discrete
symbols have been used for simulation results, obtained with dif-
ferent sample sizes, and have the following meanings: circles, q
=10; squares, q=20; triangles, q=30; unless otherwise stated or
shown, here and in the following figures, the associated statistical
errors fall within symbol sizes.
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* = �s4
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exp��W̃�d� ,

�8�

W̃ = 2�s4G4���, � = 1/T*, �9�

where �Eul denotes integration over Euler angles, i.e., for any
integrable function F���
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here 2�=6 denotes the lattice coordination number, and s4 is
the variational parameter �i.e., the order parameter�. More-
over

�AMF
*

�s4
= �2���; � = s4 − �1/���

Eul
G4���exp��W̃�d� ,

�11�

and the consistency equation is �=0.
The free energy was minimized numerically for each tem-

perature over a fine grid, by means of numerical routines
using both the function �Eq. �8�� and its derivative �Eq. �11��;
the obtained variational parameters were used to calculate
the potential energy per particle UMF

*

UMF
* =

���AMF
* �

��
= − �s4

2, �12�

where the consistency equation has been allowed for on the
right-hand expression; the configurational specific heat CMF

*

was then calculated from UMF
* by numerical differentiation;

here and in the following formulas, asterisks mean scaling by
� for energy quantities, and scaling by kB for the specific
heat. We found a low-temperature ordered phase and a first-
order transition to the disordered one, taking place at the
temperature �MF=0.7878.

Simulations were carried out on a periodically repeated
cubic sample, consisting of V=q3 particles, q=10,20,30;
calculations were run in cascade, in order of increasing tem-
perature, and starting from a perfectly ordered configuration
at the lowest investigated temperature; each cycle �or sweep�
consisted of 2V MC steps, including a sublattice sweep �22�;
the finest temperature step used was �T*=0.0005, in the
transition region.

Notice that we shall find here a pronounced first-order
transition, and that simulations carried out in order of de-
creasing temperature and started from the disordered high-
temperature régime may show hysteresis.

Different random-number generators were used, as dis-
cussed in Ref. �22�. Equilibration runs took between 25 000
and 100 000 cycles, and production runs took between
200 000 and 800 000; macrostep averages for evaluating sta-
tistical errors were taken over 1000 cycles. Calculated ther-
modynamic quantities include mean potential energy per site
U* and configurational specific heat per particle C*.

As for the the frame-independent �rotationally invariant�
order parameter, let

M =
� 4

21
	�

�=1

V

�
�=1

V ��
j=1

3

�
k=1

3

P4�w�,j · w�,k�	 : �13�

then the simulation estimate for the order parameter is

FIG. 3. MF predictions and simulation results for the configu-
rational heat capacity; same meaning of symbols as in Fig. 2; here
the associated statistical errors, not shown, range between 1% and
5%.

FIG. 4. MF predictions and simulation results for the order pa-
rameters s4, obtained with different sample sizes; same meaning of
symbols as in Fig. 2.
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s4 =
1

V
�M� , �14�

and its associated susceptibility reads

�4 =
1

V
���M2� − �M�2� . �15�

As for computational aspects of Eq. �13�, let us remark that,
by the addition theorem for spherical harmonics �17–19�, the
double sums appearing in it can be constructed via single
sums �7�, i.e., as linear combinations of the squares of the
simpler quantities

� j,m = �
�=1

V

Re�C4,m�w�,j��, � j,m = �
�=1

V

Im�C4,m�w�,j��;

�16�

here m=0,1 ,2 ,3 ,4 ,C4,m�¯� are modified spherical harmon-
ics, and Re and Im denote real and imaginary parts, respec-
tively; in turn, each spherical harmonics is a suitable poly-
nomial constructed in terms of Cartesian components of the
corresponding unit vector �see, e.g., Ref. �23��; notice also
that in this case all second-rank order parameters are zero by
symmetry �15�.

One can also evaluate the so-called short-range order pa-
rameter �24,25�

�4 =
4

21��
j=1

3

�
k=1

3

P4�f jk�� �17�

measuring correlations between pairs molecules associated
with nearest-neighboring sites; in the present case, the func-
tional form of the interaction potential entails that the poten-
tial energy is proportional to �4, i.e., U*=−��4.

Long- and short-range orientational order can be com-
pared via the correlation excess

r4 = �4 − s4
2. �18�

RESULTS AND COMPARISONS

MF predictions and MC results for a few observables are
plotted and compared in Figs. 2–6.

Simulation results for the potential energy �Fig. 2� are
independent of sample size for T�0.68 and then T�0.72,
and show a pronounced sample-size dependence in between;
actually, already for q=20, Figure 2 exhibts a pronounced
jump taking place over a temperature range of 0.0005.

Figure 4 shows a similar pattern as for the jump of s4,
taking place at the same temperature as for U*; on the other
hand, in the low-temperature regime, sample-size effects ap-
pear to saturate for q
20, and the high-temperature region
exhibits a pronounced decrease of s4 with increasing sample
size.

Both configurational specific heat �Fig. 3� and susceptibil-
ity �Fig. 5� peak around the same temperature, corresponding
to the named jumps; they show a recognizable sample-size
dependence over the same temperature range 0.68�T*

TABLE I. Transitional properties for the investigated model;
MC results are based on the largest investigated sample size q
=30.

Method � �U* s4

MF 0.7878 0.8181 0.5222

MC 0.692±0.001 0.28±0.04 0.38±0.02

FIG. 5. Simulation results for the order parameter susceptibility
�4, obtained with different sample sizes: same meaning of symbols
as in Fig. 2.

FIG. 6. Simulation results for the correlation excess r4 �see Eq.
�18��, obtained with different sample sizes: same meaning of sym-
bols as in Fig. 2.
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�0.72, and are again largely unaffected by sample sizes out-
side it.

Simulation results for the correlation excess are plotted in
Fig. 6, where the transition is signaled by both a peak and a
recognizable jump; in the disordered region, sample-size ef-
fects appear to saturate for q
20.

Thus we propose a first-order transition, and the value
�MC=0.692±0.001, for the transition temperature; here the
error bar is conservatively taken to be twice the temperature
step used in the transition region. Upon analyzing the simu-
lation results for the largest sample as discussed in Refs.
�26,27�, we obtained the estimates for transitional properties
collected in Table I; actually, the same analysis was also
applied to simulation results obtained for q=20, and yielded
consistent results. Table I shows a fair qualitative agreement
between MF and MC; of course, in quantitative terms MF
overestimates the transition temperature, and, even worse, its
first-order character, as well known for LL; let us mention,
for comparison, that the ratio �MC/�MF is �0.878, and that
the corresponding value for LL is �0.856 �10�.

Partial snapshots of configurations extracted from a
sample defined by q=20 and obtained at temperatures below
and above the transition �T*=0.675 and T*=0.7� are shown
in Figs. 7 and 8, respectively. More precisely, in order to
maintain readability, we decided to show only a horizontal
section of the sample, i.e., the square layer consisting of �q2�
particles whose centers of mass had the same value for the

vertical z coordinate; the arbitrarily chosen value was q /2.
To summarize, we have defined a very simple cubatic me-
sogenic lattice model �so to speak, the cubatic counterpart of
LL�, involving continuous interactions, and investigated it by
MF and MC; both approaches show a first-order transition,
and MF produces a reasonable qualitative agreement with
MC.
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